Fall 2010-2011 Prof: M. Egeileh

Final Exam Math 201 - Sections 24 to 26

Date: February 3 Duration: 2 hours

Problem 1 (answer on pages 1 and 2 of the booklet)

Which of the following series converge, and which diverge? (6 pts each)

a)
$$\sum_{n=1}^{\infty} \frac{(\ln n)^{201}}{n^{1.02}}$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(1 + \frac{8}{n}\right)^n$$

$$\begin{array}{c}
\text{(c)} \sum_{n=1}^{\infty} \sqrt{n} \ln \left(1 + \frac{1}{n^{1.5}} \right) \\
\text{(c)} \sum_{n=1}^{\infty} \sqrt{n} \ln \left(1 + \frac{1}{n^{1.5}} \right)
\end{array}$$

Problem 2 (answer on page 3 of the booklet) Show that the vector field

$$\vec{F} = (2x\cos y + yz) \vec{i} + (xz - x^2\sin y) \vec{j} + (xy) \vec{k}$$

is conservative, and evaluate the work done by \vec{F} along a curve joining (5,0,9) to $(1,\pi,0)$. (24 pts)

Problem 3 (answer on pages 4 and 5 of the booklet)

Consider the function $f(x,y) = x^2 + 2y^2 - \frac{y^3}{3}$.

- 1. Find all local maxima, local minima, and saddle points of f(x,y). (13 pts)
- 2. Find the tangent plane and normal line to the surface z = f(x, y) at the point $(0, 4, \frac{32}{3})$. (12 pts)

Problem 4 (answer on page 6 of the booklet) Suppose f(x, y, z) is a differentiable function of two variables such that : $\nabla f(3,2,1) = 6\vec{i} - 2\vec{j}$, $\nabla f(3,1,-4) = \vec{i} + \vec{j} + \vec{k}$ and $\nabla f(2,1,7) = 3\vec{i} - \vec{j} + \vec{k}$. Let x = 2r + s, y = 2r - s, $z = -2(r^2 + s^2)$ and w = f(x,y,z). Find w_r and w_s at the point (r,s) = (1,1). (24 pts)

Problem 5 (answer on pages 7 and 8 of the booklet) Let D be the region bounded from below by the cone $z = \sqrt{x^2 + y^2}$, and from above by the paraboloid $z = 2 - x^2 - y^2$.

- 1. Set up and evaluate the iterated integral in cylindrical coordinates that gives the volume of D using the order of integration $dz dr d\theta$. (11 pts)
- 2. Set up (without evaluating) the iterated integral in cylindrical coordinates that gives the volume of D using the order of integration $dr dz d\theta$. (9 pts)
- 3. Set up (without evaluating) the iterated integral in spherical coordinates that gives the volume of D using the order of integration $d\rho \ d\phi \ d\theta$. (6 pts)

Problem 6 (answer on pages 9 and 10 of the booklet) Use the transformation u = x + y, v = y - 2x to rewrite $\int_0^1 \int_0^{1-x} \sqrt{x+y} (y-2x)^2 dy dx$ as an integral over an appropriate region G in the uv-plane. Then evaluate the uv-integral over G. (25 pts)

Problem 7 (answer on pages 11, 12, 13 and 14 of the booklet)
We consider the vector field $\vec{F} = \frac{x}{x^2 + y^2} \vec{i} + \frac{y}{x^2 + y^2} \vec{j}$. Let C_1 be the circle of center (0,0) and radius 1, oriented counterclockwise. Let C_2 be the square of vertices A(-2,2), B(2,2), C(2,-2) and D(-2,-2), oriented clockwise. Finally, let R be the region of the plane inside C_2 and outside C_1 .

1. Calculate the flux integral $\oint_{C_1} \vec{F} \cdot \vec{n} \, ds$ directly, by choosing a suitable parametrization for C_1 . (12 pts)

- 2. Calculate the flux integral $\oint_{C_2} \vec{F} \cdot \vec{n} \, ds$ directly, by choosing a suitable parametrization for each of the four sides of C_2 ([AB], [BC], [CD] and [DA]). (8 pts)
- 3. If \vec{G} is a vector field in the plane, we define the flux of \vec{G} inwards the region R by

$$\Phi(\vec{G}) = \oint_{C_1} \vec{G} \cdot \vec{n} \, ds + \oint_{C_2} \vec{G} \cdot \vec{n} \, ds$$

Use Green's theorem to show that for any vector field \vec{G} in the plane,

$$\Phi(\vec{G}) = -\iint_R \operatorname{div}(\vec{G}) \ dA(x, y)$$

(Hint: call D_2 the square region enclosed by C_2 , and call D_1 the disk enclosed by $C_1...$) (6 pts)

4. Use the results of questions 1. and 3. to recalculate $\oint_C \vec{F} \cdot \vec{n} \ ds$. (8 pts)

Problem 8 (answer on pages 15, 16 and last of the booklet)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Approximate $\int_0^{0.1} e^{-x^2} dx$ with an error of magnitude less than 10^{-5} . (6 pts)

$$\int_0^\infty e^{-\pi x^2} \, dx = \frac{1}{2}$$

(Hint: if $I = \int_0^\infty e^{-\pi x^2} dx$, then $I^2 = \int_0^\infty \int_0^\infty e^{-\pi (x^2 + y^2)} dx dy$). (6 pts)

4. Let E be the error resulting from the approximation $\int_0^{100} e^{-\pi x^2} dx \simeq \frac{1}{2}$. Show that

$$|E| < \frac{e^{-5000\pi}}{2}$$

(6 pts)